MATH for SCIENCE Significant Digits ~ Lesson Plan

I. Topic: Significant Digits ~

II. Goals/Objectives:
A. Students will understand how to use a measuring instrument to the limit of its precision.
B. Students will know which digit in a measured value is the most certain.
C. Students will know which digit in a measured value is the uncertain value.
D. Students will understand which zeros are significant and which are not significant in a measured number.
E. Students will know how to perform mathematical operations and end with correct number of significant digits.
III. National Education Standards:
A. Mathematics.

1. NM-NUM.9-12.2

Understand meanings of operations \& how they relate to one another.
2. NM-ALG.9-12.3

Use mathematic models to represent and understand quantitative relationships.
3. NM-MEA.9-12.1

Understand measurable attributes of objects and the units, systems, and processes of measurement.
4. NM-PROB.PK-12.1

Build new math knowledge through problem solving.
5. NM-PROB.PK-12.2

Solve problems that arise in mathematics and in other contexts.
6. NM-PROB.REA.PK-12.4

Select and use various types of reasoning and methods of proof.
7. NM-PROB.COMM.PK-12.2

Communicate their math thinking coherently and clearly to peers, teachers, and others.
8. NM-PROB.CONN.PK-12.1

Recognize and use connections among math ideas.
B. Science

1. Standard 12: Level III - Benchmarks 6,8

Level IV - Benchmark 4
IV. Materials:
A. Blackboard with colored chalk or whiteboard with colored markers.
B. Overhead projector.
C. Clear projection sheets to make overhead sheets of the "Presentation Notes."
D. "Student Notes" copied for each student.
E. Pencils, colored pencils, \& calculators.
F. Significant Digits Worksheet.
V. Presentation Outline:
A. Introduction.
B. Rules for determining the number of Significant Digits.
C. Multiplication and Division

1. Rules and practices.
2. Examples.
D. Addition and Subtraction
3. Rules and practices.
4. Examples.
VI. Presentation:
A. Use the presentation notes on an overhead projector, or
B. Use the power point presentation.
VII. Significant Digits Presentation: Student Notes ~

Students are to fill in the blank spaces in their notes during the presentation.
VIII. Independent Practice: Significant Digits Worksheet ~
A. Homework: \#s $1-40$.
B. Due next day.
IX. Evaluation/Assessment: Significant Digits Quiz ~

Have students take this the next day after going over any questions about the homework.

MATH for SCIENCE Significant Digits

I. Introduction ~
A. In science different instruments are used to take measurements. There are different scales that can be used to find the mass of an object. For example, a table scale accurate to milligrams may be used for small objects, but a floor scale accurate to just grams may be used for a large object. A micrometer may be used to find the length of a microscopic object, but a kilometer may be used for measuring a road. Thus, the calibration of each measuring instrument determines the units that can be measured accurately.
When taking measurements, the number of digits recorded depends on the precision of the instrument.

1. The last digit is always an estimate and therefore is called the uncertain or estimated digit.
2. The digits that precede the last digit are considered the exact or certain digits.
3. The certain/exact digits and the one uncertain/estimated digit are called the significant digits.

Rules for Determining the Number of Significant Digits

Type of Number	\# of Digits to Count	Examples	\# of Significant Digits
1. Nonzero digits	All nonzero digits	12,345	5 sig. dig.
2. Zeros before nonzero digits (Leading Zeros)	None of the leading zeros	$\begin{aligned} & \hline 0.00678 \\ & 0.000089 \\ & \hline \end{aligned}$	3 sig. dig. 2 sig. dig.
3. Zeros between two nonzero digits (Captured Zeros)	All of the trapped zeros, plus the nonzero digits	$\begin{aligned} & \hline 36.0002 \\ & 14003 \end{aligned}$	6 sig. dig. 5 sig. dig.
4. Zeros following last nonzero digits (Trailing Zeros)	Trailing zeros are counted only if there is a decimal point	$\begin{array}{\|l\|} \hline 700 \\ 4000 . \\ 0.0200 \\ \hline \end{array}$	1 sig. dig. 4 sig. dig. 3 sig. dig.
5. Scientific Notation	All of the digits	$\begin{aligned} & 5.3 \times 10^{4} \\ & 4.60 \times 10^{-3} \end{aligned}$	2 sig. dig. 3 sig. dig.

B. When doing multiplication and division calculations with measured numbers:

1. The number of digits recorded for the answer must not indicate more precision than the tool/instrument being used is capable of measuring.
2. Also, the result can not have more significant digits than the measurement with the fewest significant digits.
3. For example:
a. The length, width and height of a box are each measured to a tenth of a centimeter, $\mathrm{l}=12.3 \mathrm{~cm}, \mathrm{w}=8.7 \mathrm{~cm}, \mathrm{~h}=4.8 \mathrm{~cm}$;
b. When these numbers are multiplied together the result is $513.648 \mathrm{~cm}^{3}$. This would indicate that the instruments were capable of measuring to a thousandth of a centimeter.
c. To accurately reflect the instrument's level of precision, the answer must
not go past the tenths place.
d. Since two of the numbers have only two significant digits, the answer must have only two non-zero digits $-510 \mathrm{~cm}^{3}$.
C. Examples:
4. 12.53 m (4 Sig. dig.) $3.7 \mathrm{~m}(2$ sig. dig. $)=46.361 \mathrm{~m}^{2}$ This number must be rounded to 2 sig. dig. $=46 \mathrm{~m}^{2}$
5. $7.19 \mathrm{~g}(3 \mathrm{sig}$. dig. $) \times 1.3 \mathrm{ml} / \mathrm{g}(2$ sig. dig. $)=9.347 \mathrm{ml}$ This number will be rounded to 2 sig. dig. $=9.3 \mathrm{ml}$
6. $60.517 \mathrm{ml}(5$ sig. dig. $) \div 5.73 \mathrm{ml}(3$ sig. dig. $)=10.561431$ This number will be rounded to 3 sig. dig. $=10.6$
D. Counting the number of significant digits when adding and subtracting.
7. The number of significant digits in the answer is determined by the measurement with the fewest decimal places.
8. When doing the calculations, carry all the places along until the end when the final answer is determined.
E. Examples:
9. $25.341+3.68=29.021 \rightarrow 29.02$
10. $8.1+4.375=3.725 \rightarrow 3.7$
11. $348.19674+142.256=490.45274 \rightarrow 490.453$

Note for Teachers:

The highlighted areas in the "Presentation" are the areas left blank in the "Student Notes." These highlighted areas act as the grading "key" for the "Student Notes." It is recommended that each word or numbers the student successfully records on his/her "Notes" sheets be given either one half (0.5) of a point or one point. Giving students points for recording important information encourages them to stay focused during class and helps to ensure that students have complete information to study.

Significant Digits ~ Student Notes

Name: \qquad Date: \qquad Grade: \qquad
II. Introduction:
A. In science different instruments are used to take measurements. There are different scales that can be used to find the mass of an object. For example, a table scale accurate to milligrams may be used for small objects, but a floor scale accurate to just grams may be used for a large object. A micrometer may be used to find the length of a microscopic object, but a kilometer may be used for measuring a road. Thus, the
\qquad of each measuring \qquad determines the \qquad that can be measured accurately.
When taking measurements, the \qquad recorded depends on the \qquad of the instrument.

1. The \qquad digit is always an estimate and therefore is called the or estimated digit.
2. The digits that \qquad the last digit are considered the exact or \qquad digits.
3. The certain/exact digits and the one uncertain/estimated digit are called the
\qquad .

Rules for Determining the Number of Significant Digits

Type of Number	\# of Digits to Count	Examples	$\# \underset{\substack{\text { Digits }}}{\text { Dificant }}$
1. Nonzero digits	All nonzero digits	12,345	5 sig. dig.
2. Zeros before nonzero digits (Leading Zeros)	None of the leading zeros	$\begin{aligned} & \hline 0.00678 \\ & 0.000089 \end{aligned}$	3 sig. dig. 2 sig. dig.
3. Zeros between two nonzero digits (Trapped Zeros)	All of the trapped zeros, plus the nonzero digits	$\begin{aligned} & 36.0002 \\ & 14003 \end{aligned}$	6 sig. dig. 5 sig. dig.
4. Zeros following last nonzero digits (Trailing Zeros)	Trailing zeros are counted only if there is a decimal point	$\begin{aligned} & \hline 700 \\ & 4000 . \\ & 0.0200 \\ & \hline \end{aligned}$	1 sig. dig. 4 sig. dig. 3 sig. dig.
5. Scientific Notation	All of the digits	$\begin{aligned} & 5.3 \times 10^{4} \\ & 4.60 \times 10^{-3} \end{aligned}$	$\begin{aligned} & 2 \text { sig. dig. } \\ & 3 \text { sig. dig. } \end{aligned}$

B. When doing multiplication and division calculations with measured numbers:

1. The \qquad recorded for the answer must \qquad indicate more
\qquad than the tool/instrument being used is capable of measuring.
2. Also, the result can \qquad have \qquad significant digits than the measurement with the \qquad significant digits.
3. For example:
a. The length, width and height of a box are each measured to a tenth of a centimeter, $\mathrm{l}=12.3 \mathrm{~cm}, \mathrm{w}=8.7 \mathrm{~cm}, \mathrm{~h}=4.8 \mathrm{~cm}$;
b. When these numbers are multiplied together the result is \qquad This would indicate that the instruments were capable of measuring to a of a centimeter.
c. To accurately reflect the instrument's level of precision, the answer must
not go past the \qquad .
d. Since two of the numbers have only two significant digits, the answer must have only \qquad - \qquad cm^{3}.
C. Examples:
4. 12.53 m (__ sig. dig. $) \times 3.7 \mathrm{~m}(\ldots$ sig. dig. $)=46$. \qquad m^{2} This number must be rounded to \qquad sig. dig. $=$ \qquad m^{2}
5. $7.19 \mathrm{~g}($ \qquad sig. dig.) $\times 1.3 \mathrm{ml} / \mathrm{g}$ (\qquad sig. dig. $)=$ \qquad ml This number will be rounded to \qquad sig. dig. $=$ \qquad ml
6. 60.517 ml (\qquad sig. dig.) $\div 5.73 \mathrm{ml}($ \qquad sig. dig. $=$ \qquad This number will be rounded to \qquad sig. dig. $=$ \qquad
D. Counting the number of significant digits when adding and subtracting.
7. The number of significant digits in the answer is \qquad by the measurement with the \qquad decimal places.
8. When doing the calculations, \qquad all the \qquad along until the
\qquad when the \qquad answer is determined.
E. Examples:
9. $25.341+3.68=$ \qquad \rightarrow \qquad
10. $8.1+4.375=$ \qquad \rightarrow \qquad
11. $348.19674+142.256=$ \qquad \rightarrow \qquad

Significant Digits Worksheet

Name: \qquad Date: \qquad Grade: \qquad
A. Determine the number of significant digits for each measurement.

1. 28,302
2. 53.0004
3. 0.00635
4. 0.00070
5. 1.904
6. 37,800,000
7. 1,200
8. 8,500 .
9. 875.0
10 . 49.17
\qquad
\qquad
B. For the following problems: a. List the number of significant digits for each number.
b. Do the calculations.
c. Give the answer in the correct number of significant digits.
10. $(247.3)(1.23)$
11. $(15)(20.4)(0.66)$
12. (70)(13.2)
13. $(50.0)(0.0041)$
14. (33.01)(800)
15. 30,000
16. $\underline{9,400.2}$
17. $\quad \underline{5.079}$
18. $\underline{82.16}$
9.2
19. $\underline{0.0734}$
68.03
C. Add or subtract the following problems. Do not round off to the correct number of significant digits until the end.
20. $301.410+127.6705+48.931+1,006.80 \quad$ 22. $1,374+682.15+2,900.0$
21. $6.013+2.04+5.628+3.0$
22. $841.3+96.45+610+357.075$
23. $1,680+3,145+2,900$
24. $2,376.25-1,481.1$
25. $24.0184-20.08$
26. $4.05-2.374$
27. $0.575-0.3042$
28. 20,362.6-16,873.243
D. When doing the following problems: a. Identify the number of significant digits for each number.
b. Do the indicated calculations.
c. Give the answer in the appropriate number of significant digits.
29. $\quad 3.26 \mathrm{~cm} \mathrm{x} 1.4 \mathrm{~cm}$
30. $\quad 483.21 \mathrm{~g}-13.9 \mathrm{~g}$
31. $180.4 \mathrm{ml}+72.364 \mathrm{ml}+100.09 \mathrm{ml}$
32. $\quad 56.7 \mathrm{~m} \mathrm{x} 13.90 \mathrm{mx} 20.1 \mathrm{~m}$
33. $\quad 278 \mathrm{~km}$
3.4 hrs
34. $\quad 619.45 \mathrm{~kg}$
35.5 m
35. $\quad 0.0047 \mathrm{~cm} \times 20.07 \mathrm{~cm} \times 40.0 \mathrm{~cm}$
36. 0.0890 mx 300.0 mx 4.35 m
37. $\quad 9396.3 \mathrm{~m}$ 123.0 sec
38. $\quad 50.06 \mathrm{mg}+600.0 \mathrm{mg}+2200 \mathrm{mg}$

Significant Digits Worksheet

Answer Key

A. 1. 5 sd
2. 3 sd
3. 4 sd
4. 2 sd
5. 4 sd
6. 6 sd
7. 2 sd
9. 4 sd
8. 3 sd
10. 4 sd
B.
Given \#s
11. 247.3
1.23
\# Significant Digits
4
3
12. 15
2
20.4
0.66
3
2
$\begin{array}{ll}\text { 13. } & 70 \\ & 13.2\end{array}$
1
900
3
14. 50.0
0.0041
15. $\quad 33.01$
800
16. 30,000
125.0
17. $9,400.2$
6.33
18. 5.079
0.015
19. 82.16
9.2
20. 0.0734
68.03
C. 21. $1,484.8$
24. 1,305 .
27. 3.94
29. 0.271
22. 4,956
25. 7,700
28. 1.68
8.9
2
23. 16.7
26. 895.2
D.
Given \#s
31. 3.26
1.4
32. 483.21
13.9
33. 180.4
72.364
100.09

\# Significant Digits	Answer 3
2	$4.5 \mathrm{~cm}^{2}$
5	$469 . \mathrm{g}$
3	
4	352.9 ml
5	
5	

D.

Given \#s

34. 56.7
13.90
20.1
35. 278
3.4
36. 619.45
35.5
37. 0.0047
20.07
40.0
38. 0.0890
300.0
4.35
$\begin{array}{ll}39 . & 9396.3 \\ & 123.0\end{array}$
$\begin{array}{ll}39 . & 9396.3 \\ & 123.0\end{array}$
39. 50.06
600.0

2200
\# Significant Digits
3
4
3
3
2

5
3
2
4
3
3
4
3

5
4

4
4
2

Answer
$15,800 \mathrm{~m}^{3}$
$82 \mathrm{~kg} / \mathrm{hr}$
$17.4 \mathrm{~kg} / \mathrm{m}$
$3.8 \mathrm{~cm}^{3}$
$116 \mathrm{~m}^{3}$
$76.39 \mathrm{~m} / \mathrm{sec}$

2900 mg

Worksheet Grading Rubric:
105/100 Points
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Problems } & \begin{array}{c}\text { Correct \# Significant } \\ \text { Digits } \\ \text { (1 pt each) } \\ \text { (5 pts Possible) }\end{array} & \text { Problems } & \begin{array}{c}\text { Correct \# Significant } \\ \text { Digits } \\ (1 \mathrm{pt} \mathrm{each})\end{array} \\ (10 \mathrm{pts} \text { Possible) }\end{array}\right)$

Problems	Correct \# of Significant Digits (1 pt each)	Correct Calculations (1 pt each)	Answer with Correct \# of Significant Digits $(1 \mathrm{pt} \mathrm{each})$	Total Points (3 pts each) (30 pts Possible)
B 11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				

Problems	Correct Calculations $(2$ pts each $)$	Correct \# Significant Digits $(1 \mathrm{pt} \mathrm{each})$	Total Points $(3$ pts each $)$ $(30 \mathrm{pts} \mathrm{Possible)})$
C 21.			
22.			
23.			
24.			
25.			
26.			
27.			
28.			
29.			
30.			

Problems	Correct \# of Significant Digits (1 pt each)	Correct Calculations (1 pt each)	Answer with Correct \# of Significant Digits (1 pt each)	Total Points (3 pts each) $(30 \mathrm{pts} \mathrm{Possible)}$
D 31.				
32.				
33.				
34.				
35.				
36.				
37.				
38.				
39.				
40.				

Significant Digits Quiz

Name: \qquad Date: \qquad Grade: \qquad

1. \qquad Non-zero digits are \qquad counted as significant.
A. Always
B. Never
C. Sometimes
2. \qquad Zeros which occur after the last nonzero integer at the end of a number (trailing zeros) are
\qquad significant.
A. Always
B. Never
C. Sometimes
3. \qquad Zeros that are between two nonzero integers are \qquad significant.
A. Always
B. Never
C. Sometimes
4. \qquad Zeros at the beginning of a number or before a nonzero integer are \qquad significant.
A. Always
B. Never
C. Sometimes

For the following problems, give the number of significant digits (sd) for each number.
5. \qquad 3200.04
A. 3 sd
B. 2 sd
C. 5 sd
D. 6 sd
6. \qquad 781.56
A. 3 sd
B. 5 sd
C. 1 sd
D. 6 sd
7. \qquad 0.00081
A. 2 sd
B. 3 sd
C. 4 sd
D. 6 sd
8. \qquad 1,700
A. 1 sd
B. 2 sd
C. 3 sd
D. 4 sd
9. \qquad 2.480
A. 1 sd
B. 2 sd
C. 3 sd
D. 4 sd
10. \qquad 6.735×10^{3}
A. 7 sd
B. 3 sd
C. 4 sd
D. 0 sd

Significant Digits Quiz
 Answer Key

Name: \qquad Date: \qquad Grade: \qquad

1. _A

Nonzero digits are \qquad counted as significant.
A. Always
B. Never
C. Sometimes
2. __ Zeros which occur after the last nonzero integer at the end of a number (trailing zeros) are
\qquad significant.
A. Always
B. Never
C. Sometimes
3. __A

Zeros that are between two nonzero integers are \qquad significant.
A. Always
B. Never
C. Sometimes
4. _-

Zeros at the beginning of a number or before a nonzero integer are \qquad significant.
A. Always
B. Never
C. Sometimes

For the following problems, give the number of significant digits (sd) for each number.
5. _ D 3200.04
A. 3 sd
B. 2 sd
C. 5 sd
D. 6 sd
6. __B
781.56
A. 3 sd
B. 5 sd
C. 1 sd
D. 6 sd
7. __A
0.00081
A. 2 sd
B. 3 sd
C. 4 sd
D. 6 sd
8. _- B

1,700
A. 1 sd
B. 2 sd
C. 3 sd
D. 4 sd
9. __D
2.480
A. 1 sd
B. 2 sd
C. 3 sd
D. 4 sd
10. _C
6.735×10^{3}
A. 7 sd
B. 3 sd
C. 4 sd
D. 0 sd

Quiz Grading Rubric: $10 / 10$ Points
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Problems } & \begin{array}{c}\text { Correct \# Significant } \\ \text { Digits } \\ \text { (1 pt each) }\end{array} & \text { Problems } & \begin{array}{c}\text { Correct \# Significant } \\ \text { Digits } \\ \text { (1 pt each) }\end{array} \\ (10 \mathrm{pts} \mathrm{Possible)}\end{array}\right]$

