MATH for SCIENCE Conversion Problems ~ Lesson Plans

I. Topic: Conversion Problems ~
II. Goals/Objectives:
A. Students will understand the relationship between English and metric systems.
B. Students will learn to convert from one set of units to another set of units within the English system.
C. Students will learn to convert English units to metric units.
D. Students will learn to convert metric units to English units.
E. Students will be able to do one-step conversions.
F. Students will be able to do multi-step conversions.
G. Students will be able to convert two unit rate problems to two different rate units.
III. National Education Standards:
A. Mathematics.

1. NM-NUM.9-12.1

Understand numbers, ways of representing numbers, relationships among numbers, and number systems.
2. NM-ALG.9-12.3

Use mathematic models to represent and understand quantitative relationships.
3. NM-ALG.9-12.4

Analyze change in various contexts.
4. NM-PROB.PK-12.1

Build new math knowledge through problem-solving skills.
5. NM-PROB.PK-12.2

Solve problems that arise in mathematics and in other contexts.
6. NM-PROB.PK-12.3

Apply and adapt a variety of appropriate strategies to solve problems.
7. NM-PROB.COMM.PK-12.2

Communicate math thinking coherently and clearly to peers, teachers, and others.
8. NM-PROB.CONN.PK-12.2

Understand how mathematic ideas interconnect and build on one another to produce a coherent whole.
9. NM-PROB.CONN.PK-12.3

Recognize and apply mathematics in contexts outside of the classroom.
10. NM-PROB.REP.PK-12.2

Select, apply, and translate among mathematic representations to solve problems.
B. Science

Standard 12 Level III - Benchmarks 6, 8
Level IV - Benchmark 4
IV. Materials:
A. Blackboard with colored chalk or whiteboard with colored markers.
B. Overhead projector.
C. Clear projection sheets to make overhead sheets of the "Presentation Notes."
D. "Student Notes" copied for each student.
E. Pencils, colored pencils, \& calculators.
F. Conversion Problems Worksheet.
G. Conversion Tables Handout.
H. Metric Equivalents \& SI Units Handout.
V. Presentation Outline:
A. Dimensional Analysis

1. Standard or situational equivalents - two fractions.
2. Problem Solving Scheme.
B. One Step Conversions
3. Problem analysis.
4. Examples.
C. Two Step Conversions ~ Type 1
5. Problem analysis.
6. Examples.
D. Two Step Conversions ~ Type 2
7. Problem analysis.
8. Examples.
E. Three Step Conversions
9. Problem analysis.
10. Examples.
VI. Presentation:

This may take two days for students who are not mathematically inclined. If taking two days, cover the material through "Two Step Conversions ~ Type 1" the first day. The second day, begin by reviewing day one and the homework. Then, cover the remaining material in the packet.
A. Use the presentation notes on an overhead projector, or
B. Use the power point presentation.
VII. Conversion Problems Presentation: Student Notes ~

Students are to fill in the blank spaces in their notes during the presentation.
VIII. Handouts:
A. Conversion Tables - English and Metric Equivalents.
B. Metric Equivalents and SI Data.
IX. Independent Practice: Conversion Problems Worksheet ~
A. Homework: \#s A: 1-10; B: 1-10; C: 1-10; D: $1-10$ due the next day.
B. If taking two days:

1. Day 1 HW: \#s A: $1-10$; B: $1-10$ due the next day.
2. Day 2 HW: \#s C: 1-10; D: 1-10 due the next day.
X. Evaluation/Assessment: Conversion Problems Quiz ~

Have students take this quiz the day after going over any questions about the entire homework worksheet.

MATH for SCIENCE Conversion Problems

I. Introduction
A. In science many problems require conversions from one set of units to another. Some people use many proportions to do these conversions. This method can be quite confusing when there are multiple conversions to be done. The most efficient and easiest method to understand is called dimensional analysis or factor-label method.
B. Dimensional analysis requires students to understand two concepts.

1. All numbers must be used with their units. For example, weight of an object would be 8 g and not just 8 .
2. All standard or situational equivalents can be represented by two fractions. The choice depends on what units are originally given in the problem. For example:

1 minute $=60$ seconds	$\Rightarrow \frac{1 \text { minute }}{60 \text { seconds }}$	or	$\frac{60 \text { seconds }}{1 \text { minute }}$
1 foot $=12$ inches	$\Rightarrow \frac{1 \text { foot }}{12 \text { inches }}$	or	$\frac{12 \text { inches }}{1 \text { foot }}$
1 meter $=100$ centimeter	$\Rightarrow \frac{1 \text { meter }}{100 \mathrm{~cm}}$	or	$\frac{100 \mathrm{~cm}}{1 \text { meter }}$

3. This method can be used for problems that are one step, two steps, three steps, and more. It can accommodate any number of conversions as one linear problem, moving one step at a time. Each step directs the set-up for the next step until the goal units are reached.
4. Problem-Solving Scheme

Given Data \mathbf{x} Specific Fractional Equivalent(s) = What You're Looking For
The units in the numerator of the first item (given data) determine the units for the denominator of the next fraction. When these units are the same, they will cancel each other out. This also chooses which one of the two forms of the specific fractional equivalents you will need to use.

C. One Step Conversions

1. How many minutes are in five hours?

Given Data: 5 hrs
Fractional Equivalent:

$$
1 \text { hour }=60 \text { minutes } \quad \frac{1 \text { hour }}{60 \mathrm{~min}} \quad \text { or } \quad \frac{60 \mathrm{~min}}{1 \text { hour }}
$$

Looking For: \# minutes

$$
\begin{aligned}
& \text { Given Data } \mathbf{x} \text { Specific Fractional Equivalent = Looking For } \\
& 5 \text { hours } \mathbf{x} \frac{60 \mathrm{~min}}{1 \text { hour }}=300 \mathrm{~min}
\end{aligned}
$$

Notice how the "hour" units canceled each other out.
2. If a turtle walked 20 yards in one hour, how many inches did he walk in that hour?
Given Data: 20 yards/ 1 hour
Specific Fractional Equivalents:
1 yard $=36$ inches $\quad \frac{1 \text { yard }}{36 \mathrm{in}} \quad$ or $\frac{36 \mathrm{in}}{1 \text { yard }}$

Looking For: \# inches/hour

Given Data \mathbf{x} Specific Fractional Equivalent = Looking For

$$
\frac{20 \text { yards- }}{1 \mathrm{hr}} \times \frac{36 \text { inches }}{1 \text { yard }}=\frac{\mathbf{7 2 0} \text { inches }}{\mathbf{1 ~ h r}}
$$

3. A nugget of gold found in the river weighs 6.5 ounces. How many grams will that weigh?
Given Data: 6.5 oz
Specific Fractional Equivalents:
1 ounce $=28.33$ grams $\quad \frac{1 \text { ounce }}{28.33 \mathrm{~g}} \quad$ or $\quad \underline{28.33 \mathrm{~g}}$

Looking For: \# grams

> Given Data \mathbf{x} Specific Fractional Equivalent $=$ Looking For 6.5 ounces $\mathbf{x} \frac{28.33 \text { grams }}{1 \text { ounce }}=\mathbf{1 8 4 . 1 4 5}$ grams
D. Two Step Conversions ~ Type 1

Remember the units in the previous numerator will determine which form of the two Fractional Equivalents will be used.

1. Two students were using a computer program for their research data. One of their study observations took 5 hours. Their computer program however, will only let them enter the time in seconds. How many seconds should they enter?
Given Data: 5 hours
Specific Fractional Equivalents:

1 hour $=60$ minutes	$\frac{1 \text { hour }}{60 \mathrm{~min}}$	or	$\frac{60 \mathrm{~min}}{1 \mathrm{hour}}$
1 minute $=60$ seconds	$\frac{1 \mathrm{~min}}{60 \mathrm{sec}}$	or	$\frac{60 \mathrm{sec}}{1 \mathrm{~min}}$

Looking For: \# seconds
Given Data \mathbf{x} Specific Fractional Equivalents = Looking For
5 hours $\times 60 \mathrm{~min} \times 60 \mathrm{sec}=18,000 \mathrm{sec}$
1 hour 1 min
2. Convert 2,250 grams to \# pounds.

Given Data: 2,250 grams
Specific Fractional Equivalents:

1 gram $=0.0353$ ounces	$\frac{1 \text { gram }}{0.0353 \mathrm{oz}}$	or	$\frac{0.0353 \mathrm{oz}}{1 \mathrm{gram}}$
16 ounces $=1$ pound	$\frac{16 \mathrm{oz}}{1 \mathrm{lb}}$	or	$\frac{1 \mathrm{lb}}{16 \mathrm{oz}}$

Looking For: \# pounds

$$
2,250 \text { grams } \times \frac{0.0353 \mathrm{oz}}{1 \text { gram }} \times \frac{1 \mathrm{lb}}{16 \mathrm{oz}}=4.964 \mathrm{lbs}
$$

3. Convert 2.5 meters to \# inches.

Given Data: 2.5 m
Specific Fractional Equivalents:

1 meter $=3.28$ feet	$\frac{1 \mathrm{~m}}{3.28 \mathrm{ft}}$	or	$\frac{3.28 \mathrm{ft}}{1 \mathrm{~m}}$
1 foot $=12$ inches	$\frac{1 \mathrm{ft}}{12 \mathrm{in}}$	or	$\frac{12 \mathrm{in}}{1 \mathrm{ft}}$

Looking For: \# inches
$2.5 \mathrm{~m} \times \frac{3.28 \mathrm{ft}}{1 \mathrm{~m}} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}}=98.4 \mathrm{in}$

E. Two Step Conversions ~ Type 2

These problems involve converting not just the numerator given, but also the denominator.

1. Do the usual conversion of the numerator.
2. Then, convert the denominator. To do this, the units in the original denominator determine the units in the later numerator. Thus, by having the same units in the denominator and then in the later numerator, the units once again will cancel each other out.
3. Convert 50 miles/hour to \# kilometers/minute.

Given Data: 50 miles/hour
Specific Fractional Equivalents:

1 mile $=1.61 \mathrm{~km}$	$\frac{1 \text { mile }}{1.61 \mathrm{~km}}$	or	$\frac{1.61 \mathrm{~km}}{1 \text { mile }}$
1 hour $=60 \mathrm{~min}$	$\frac{1 \mathrm{hr}}{60 \mathrm{~min}}$	or	$\frac{60 \mathrm{~min}}{1 \mathrm{hr}}$

$\frac{2.5 \text { miles }}{1 \text { hour }} \times \frac{1.61 \mathrm{~km}}{1 \text { mile }} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}}=\frac{0.067 \mathrm{~km}}{1 \mathrm{~min}}$
2. Convert 20 yards/min to \# inches/sec.

Given Data: $20 \mathrm{yd} / \mathrm{min}$ Specific Fractional Equivalents:

1 yard $=36$ inches $\quad \frac{1 \mathrm{yd}}{36 \text { in }}$ or $\frac{36 \mathrm{in}}{1 \mathrm{yd}}$

$$
1 \text { minute }=60 \text { seconds } \quad \frac{1 \mathrm{~min}}{60 \mathrm{sec}} \text { or } \frac{60 \mathrm{sec}}{1 \mathrm{~min}}
$$

Looking For: \# inches/second

$$
\frac{20 \mathrm{yd}}{1 \mathrm{~min}} \times \frac{36 \mathrm{in}}{1 \mathrm{yd}} \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=\frac{12 \mathrm{in}}{1 \mathrm{sec}}
$$

3. Convert 100 ounces/gallon to \# grams/liter.

Given Data: 100 oz/gal
Specific Fractional Equivalents:

$$
\begin{array}{lll}
1 \text { gram }=0.0353 \text { ounces } & \text { or } & 1 \text { ounce }=28.33 \text { grams } \\
1 \text { liter }=0.2642 \text { gallons } & \text { or } & 1 \text { gallon }=3.785 \text { liters }
\end{array}
$$

Looking For: \# grams/liter

$$
\frac{100 \text { oz }}{1 \text { gal- }} \times \frac{1 \text { gram }}{0.0353 \theta z} \times \frac{0.2642 \text { gal }}{1 \mathrm{~L}}=\frac{748.4 \text { grams }}{1 \mathrm{~L}}
$$

OR

$$
\overline{1 \text { gat- }} \quad 1 \theta \mathrm{z} \quad 3.785 \mathrm{~L} \quad 1 \mathrm{~L}
$$

F. Three Step Conversion Problems

Remember the units in the previous numerator will determine which form of the two Fractional Equivalents will be used.
Some Problems may also include changing the denominator's units, as well. The same sequence of actions would apply: First, change the numerator's units, then change the denominator's units.

1. Convert 3 days to \# seconds.

Given Data: 3 days
Specific Fractional Equivalents:

1 day $=24$ hours	$\frac{1 \text { day }}{24 \mathrm{hrs}}$	or	$\frac{24 \mathrm{hrs}}{1 \mathrm{day}}$
1 hour $=60$ minutes	$\frac{1 \mathrm{hr}}{60 \mathrm{~min}}$	or	$\frac{60 \mathrm{~min}}{1 \mathrm{hr}}$
1 minute $=60$ seconds	$\frac{1 \mathrm{~min}}{60 \mathrm{sec}}$	or	$\frac{60 \mathrm{sec}}{1 \mathrm{~min}}$

Looking For: \# seconds

$$
3 \text { days } \times \frac{24 \text { hrs }}{1 \text { day }} \times \frac{60 \mathrm{~min}}{1 \text { hrr }} \times \frac{60 \mathrm{sec}}{1 \mathrm{~min}}=25,920 \text { seconds }
$$

2. Convert 18 kilometers/hour to \# meters/second.

Given Data: $18 \mathrm{~km} / \mathrm{hr}$
Specific Fractional Equivalents:
$1 \mathrm{~km}=1,000 \mathrm{~m} \quad \frac{1 \mathrm{~km}}{1,000 \mathrm{~m}} \quad$ or $\quad \frac{1,000 \mathrm{~m}}{1 \mathrm{~km}}$
$1 \mathrm{hr}=60 \mathrm{~min}$
$1 \mathrm{~min}=60 \mathrm{sec}$
Looking For: meters/second

$$
\frac{18 \mathrm{~km}}{1 \mathrm{kmf}} \times \frac{1,000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 \text { har }}{60 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=\frac{5 \mathrm{~m}}{1 \mathrm{sec}}
$$

3. Convert 9,000 grams/centimeter to \# pounds/inch.

Given Data: $9,000 \mathrm{~g} / \mathrm{cm}$
Specific Fractional Equivalents:

$28.33 \mathrm{~g}=1 \mathrm{oz}$	$\underline{28.33 \mathrm{~g}}$	or	$\frac{1 \mathrm{oz}}{28.33 \mathrm{~g}}$
$16 \mathrm{oz}=1 \mathrm{lb}$	$\frac{16 \mathrm{oz}}{1 \mathrm{lb}}$	or	$\frac{1 \mathrm{lb}}{16 \mathrm{oz}}$
$2.54 \mathrm{~cm}=1 \mathrm{in}$	$\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}$	or	$\frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}$

Looking For: lb/in

$$
\frac{9,000 \mathrm{~g}}{1 \mathrm{em}} \times \frac{1-\mathrm{z}}{28.33 \mathrm{~g}} \times \frac{1 \mathrm{lb}}{16 \theta \mathrm{z}} \times \frac{2.54 \mathrm{em}}{1 \mathrm{in}}=\frac{504 \mathrm{lb}}{1 \mathrm{in}}
$$

Note for Teachers:
The highlighted areas in the "Presentation" are the areas left blank in the "Student Notes." These highlighted areas act as the grading "key" for the "Student Notes." It is recommended that each word or number the student successfully records on his/her "Notes" sheets be given either one half (0.5) of a point or one point. Giving students points for recording important information encourages them to stay focused during class and helps to ensure that students have complete information to study.

Conversion Problems ~ Student Notes

Name: \qquad Date: \qquad Grade: \qquad
II. Introduction ~
A. In science many problems require conversions from one set of \qquad to another. Some people use many proportions to do these conversions. This method can be quite confusing when there are multiple conversions to be done. The most efficient and easiest method to understand is called \qquad or

factor-label method.

B. Dimensional analysis requires students to understand \qquad concepts.

1. \qquad must be used with their \qquad . For example, weight of an object would be 8 g and not just 8 .
2. All standard or situational equivalents can be represented by
given in the problem. For example:
1 minute $=60$ seconds $\Rightarrow \underbrace{1 \text { minute }}$ or seconds
1 foot $=12$ inches $\quad \Rightarrow \quad$ or $\frac{60 \text { seconds }}{1 \text { minute }}$
1 meter $=100$ centimeter \Rightarrow
3. This method can be used for problems that are one step, two steps, three steps, and more. It can accommodate any number of \qquad as one \qquad , moving one step at a time. Each step directs the set-up for the \qquad until the goal units are reached.
4. Problem-Solving Scheme

Given Data \mathbf{x} Specific Fractional Equivalent(s) = What Your Looking For

The units in the numerator of the first item (\qquad) determine the units for the \qquad of the next fraction. When these units are the \qquad , they will cancel each other out. This also, chooses which one of the two forms of the specific fractional equivalents you will need to use.
C. One Step Conversions

1. How many minutes are in five hours?

Given Data: 5 hrs

Fractional Equivalent:
1 hour $=60 \mathrm{~min} \quad \frac{1 \text { hour }}{60 \mathrm{~min}} \quad$ or $\quad \frac{60 \mathrm{~min}}{1 \mathrm{hour}}$

Looking For: \# minutes

$$
\begin{aligned}
& \text { Given Data } \mathbf{x} \text { Specific Fractional Equivalent = Looking For } \\
& 5 \text { hours } \mathbf{x} \frac{60 \text { min }}{1 \text { hour }}=300 \mathrm{~min}
\end{aligned}
$$

Notice how the "hour" units canceled each other out.
2. If a turtle walked 20 yards in one hour, how many inches did he walk in that hour?
Given Data: \qquad
Specific Fractional Equivalents:
1 yard = 36 inches $\quad \frac{}{36 \mathrm{in}} \quad$ or $\quad 1 \mathrm{yd}$
Looking For: \qquad
Given Data \mathbf{x} Specific Fractional Equivalent $=$ Looking For
$\frac{20 \text { yards- }}{1 \mathrm{hr}} \frac{}{1 \text { yard }}=\frac{\text { inches }}{1 \mathrm{hr}}$
3. A nugget of gold found in the river weighs 6.5 ounces. How many grams will that weigh?
Given Data: \qquad
Specific Fractional Equivalents:
1 ounce $=\mathbf{2 8 . 3 3}$ grams \qquad
\qquad
Looking For: \qquad
Given Data \mathbf{x} Specific Fractional Equivalent $=$ Looking For
6.5 ounces \mathbf{x} \qquad = \qquad grams
D. Two Step Conversions ~ Type 1

Remember the units in the previous \qquad will determine which form of the two \qquad will be used.

1. Two students were using a computer program for their research data. One of their study observations took 5 hours. Their computer program however, will only let them enter the time in seconds. How many seconds should they enter?
Given Data: 5 hours
Specific Fractional Equivalents:
$\mathbf{1}$ hour = $\mathbf{6 0}$ minutes
$\quad 1$ minute $=\mathbf{6 0}$ seconds
Looking For: \# seconds
Given Data \mathbf{x} Specific Fractional Equivalents $=$ Looking For

2. Convert 2,250 grams to \# pounds.

Given Data: \qquad
Specific Fractional Equivalents:
1 gram $=0.0353$ ounces \quad or
16 ounces $=1$ pound \quad or
Looking For: \qquad
2,250 grams x \qquad x \qquad $=$ \qquad lbs

3. Convert 2.5 meters to \# inches.

Given Data:
Specific Fractional Equivalents:
1 meter $=3.28$ feet \qquad
or

1 foot $=12$ inches or

Looking For: \qquad
2.5 meters x \qquad x \qquad $=$ \qquad inches
E. Two Step Conversions ~ Type 2

These problems involve converting not just the numerator given, but also the denominator.

1. Do the usual conversion of the numerator.
2. Then, convert the denominator. To do this, the units in the original denominator determine the units in the later numerator. Thus, by having the same units in the denominator and then in the later numerator, the units once again will cancel each other out.

1. Convert 50 miles/hour to \# kilometers/minute.

Given Data: 50 miles/hour
Specific Fractional Equivalents:
1 mile $=1.61 \mathrm{~km}$ \qquad

1 hour $=60 \mathrm{~min}$ \qquad or \qquad
$\frac{2.5 \text { miles }}{1 \text { herur }} \times \frac{1.61 \mathrm{~km}}{1 \text { mile }} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}}=\frac{0.067 \mathrm{~km}}{1 \mathrm{~min}}$
2. Convert 20 yards/minute to \# inches/second. Given Data: \qquad $\mathrm{yd} / \mathrm{min}$
Specific Fractional Equivalents:
1 yard $=36$ inches \qquad or

1 minute $=60$ seconds \qquad or \qquad

Looking For: \# inches/second

3. Convert 100 ounces/gallon to \# grams/liter.

Given Data:
Specific Fractional Equivalents:
1 gram $=0.0353$ ounces \quad or $\quad 1$ ounce $=28.33$ grams
1 liter $=0.2642$ gallons \quad or $\quad 1$ gallon $=3.785$ liters
Looking For: \qquad

OR
100 日z- x \qquad x \qquad
\qquad
1 gal

G. Three Step Conversion Problems

Remember the units in the previous numerator will determine which form of the two Fractional Equivalents will be used.
Some Problems may also include changing the denominator's units, as well. The same sequence of actions would apply: change the numerator's units; then change the denominator's units.

1. Convert 3 days to $\#$ seconds.

Given Data:
Specific Fractional Equivalents:
1 day $=24$ hours \quad or

| 1 hour $=60$ minutes | or | or |
| :--- | :--- | :--- | :--- |
| 1 minute $=60$ seconds | | or |

Looking For: \qquad

$$
3 \text { days } \times \frac{24 \text { hrs }}{1 \text { day }} \times \frac{60 \min }{1 \text { hr }} \times \frac{60 \mathrm{sec}}{1 \min }=
$$

2. Convert 18 kilometers/hour to \# meters/second.

Given Data:

Specific Fractional Equivalents:

$$
1 \mathrm{~km}=1,000 \mathrm{~m} \quad \text { or }
$$

$1 \mathrm{hr}=60 \mathrm{~min}$
$1 \mathrm{~min}=60 \mathrm{sec}$
Looking For: \qquad
18 km x \qquad x \qquad x \qquad
\qquad 1 hr
3. Convert 9,000 grams/centimeter to \# pounds/inch.

Given Data:
Specific Fractional Equivalents:
$28.33 \mathrm{~g}=1 \mathrm{oz}$
$16 \mathrm{oz}=1 \mathrm{lb}$
$2.54 \mathrm{~cm}=1 \mathrm{in}$ \qquad or
Looking For: \qquad
$\underline{9,000 \mathrm{~g} \mathrm{x}}$ \qquad x \qquad X \qquad $=$ \qquad
1 cm

CONVERSION TABLES

English Units

Mass
1 pound (lb) = 16 ounces (oz)
1 ton = 2,000 pounds

Distance

1 foot = 12 inches
1 yard = 3 feet
1 yard $=36$ inches

Volume

1 pint = 2 cups
1 quart $=2$ pints
1 gallon = 4 quarts

English to Metric
 Mass

1 ounce (oz) $=28.33$ grams (g)
1 pound (lb) $=0.454$ kilogram (kg)
Distance
1 inch $=2.54$ centimeter (cm)
1 foot $=0.305$ meters (m)
1 yard $=0.9145$ meters
1 mile $=1.61$ kilometers (km)

Volume

1 fluid oz (floz) $=29.585$ milliliters (ml)
1 gallon (gal) $=3.785$ liters (L)

Temperature

Fahrenheit to Celsius
${ }^{\circ} \mathrm{F}=\frac{9}{5}{ }^{\circ} \mathrm{C}+32$

Metric Units

Mass
1 kilogram = 1,000 grams
1 gram $=1,000$ milligrams

Distance

1 kilometer $=1,000$ meters
1 meter = 100 centimeters
1 meter $=1,000$ millimeters

Volume

1 kiloliter $=1,000$ liters
1 liter $=1,000$ milliliters
1 millimeter $=1$ centimeter ${ }^{3}$
1 liter $=1$ decimeter ${ }^{3}$

Metric to English

Mass
$1 \mathrm{~g}=0.0353 \mathrm{oz}$
$1 \mathrm{~kg}=2.202 \mathrm{lbs}$
Distance
$1 \mathrm{~cm}=0.3937$ in
$1 \mathrm{~m}=3.28 \mathrm{ft}$
$1 \mathrm{~m}=1.0935 \mathrm{yd}$
$1 \mathrm{~km}=0.621$ miles

Volume

$1 \mathrm{ml}=0.0338 \mathrm{fl} \mathrm{oz}$
$1 \mathrm{~L}=0.2642 \mathrm{gal}$
Temperature
Celsius to Fahrenheit
$\left.{ }^{\circ} \mathrm{C}=\underline{5}^{(}{ }^{\circ} \mathrm{F}-32\right)$

Metric to Metric Equivalents

1 dekameters $($ dam $)=10$ meters (m)	$0.1 \mathrm{dam}=1 \mathrm{~m}$
1 hectameters $(\mathrm{hm})=100 \mathrm{~m}$	$0.01 \mathrm{hm}=1 \mathrm{~m}$
1 kilometer $(\mathrm{km})=1,000 \mathrm{~m}$	$0.001 \mathrm{~km}=1 \mathrm{~m}$
1 Megameter $(\mathrm{Mm})=1,000,000 \mathrm{~m}$	$0.000001 \mathrm{Mm}=1 \mathrm{~m}$
1 meter $(\mathrm{m})=10$ decimeters (dm)	$0.1 \mathrm{~m}=1 \mathrm{dm}$
$1 \mathrm{~m}=100$ centimeters (cm)	$0.01 \mathrm{~m}=1 \mathrm{~cm}$
$1 \mathrm{~m}=1,000$ millimeters (mm)	$0.001 \mathrm{~m}=1 \mathrm{~mm}$
$1 \mathrm{~m}=1,000,000$ micrometers $(\mu \mathrm{m})$	$0.000001 \mathrm{~m}=1 \mu \mathrm{~m}$
$1 \mathrm{~m}=1,000,000,000=$ nanometers (nm)	$0.000000001 \mathrm{~m}=1 \mathrm{~nm}$

Some SI Prefixes

Factor	Prefix		Abbreviation
10^{6}	Mega	M	
10^{3}	kilo	k	
10^{2}	hecto	h	
10^{1}	deka	da	
10^{-1}	deci	d	
10^{-2}	centi	c	
10^{-3}	milli	m	
10^{-6}	micro	μ	
10^{-9}	nano	n	
10^{-12}	pico	p	

International Units System (SI)

Quantity	Name	SI Unit Abbrev.
Length	meter	m
Mass	kilogram	kg
Time	second	s
Temperature	Kelvin	K
Amount of Substance	mole	mol
Electric Current	ampere	A
Luminous Intensity	candela	cd

Conversion Problems Worksheet
Name: \qquad Date: \qquad Grade: \qquad
One Step Conversion Problems \sim English \hookleftarrow Metric
A. Convert the units on the left to the units on the right.
\qquad

Given	Looking For
78 feet	1. meters
15 kilometers	2. ___ miles
6 inches	3. centimeters
8 fluid ounces	4. milliliters
5 liters	5.
8.5 pounds	6. ___ kilograms
200 grams	7. ___ ounces
25 milliliters	8. ___ fluid ounces
75 centimeters	9.
10. 9.0 kilograms	10. __ pounds

Two Step Conversion Problems ~ Type 1
B. Convert the units on the left to the units on the right.

Given
Looking For

1. $\quad 18.4$ fluid ounces
2. 2 days
3. 1,250 grams
4. 3,195 yards
5. $\quad 5.4$ liters
6. 4,196 grams
7. 2.5 gallons
8. $\quad 1.8$ meters
9. 425 ounces
10. 20 inches
11. \qquad liters
12. \qquad minutes
13. \qquad pounds
14. \qquad kilometers
15. \qquad fluid ounces
16. \qquad pounds
17. \qquad milliliters
18. \qquad inches
19. \qquad kilograms
20. \qquad meters

Two Step Conversion Problems ~ Type 2
C. Convert the units on the left to the units on the right.

Given
Looking For

1. 340 miles/hour
2. 6.5 ounces/in
3. 576 milliliters/minute
4. $\quad 18.5$ gallons/day
5. 238 pounds/gallon
6. $\quad 37.4$ ounces/inch
7. 1,250 milliliters/kilogram
8. 72 kilograms/meter
9. 446 grams/liter
10. 98 inches/second
11. \qquad $\mathrm{km} /$ minute
12. \qquad $\mathrm{ml} / \mathrm{cm}$
13. \qquad fluid oz/hour
14. \qquad liters/hour
15. \qquad $\mathrm{kg} / \mathrm{liter}$
16. \qquad grams/cm
17. \qquad fluid oz/pound
18. \qquad pounds/feet
19. \qquad ounces/gallon
20. \qquad cm /minute

Three Step Conversion Problems
D. Convert the units on the left to the units on the right.

Given

\qquad Looking For

1. 690 inches/minute
2. \qquad meters/hour
3. 812 ounces/gallon
4. \qquad kg/liter
5. 5,416 fluid ounces/day
6. 24 pounds/day
7. \qquad liters/hour
8. $\quad 37.5$ gallons/yard
9. 1,892 milliliters/second
10. \qquad kg /minute
11. \qquad $\mathrm{ml} /$ meter
12. 9.6 liters/hour
13. \qquad liters/hour
14. $\quad 13.2$ kilometers/day
15. \qquad $\mathrm{ml} /$ second
16. \qquad meters/min
17. 427 ounces/gallon
18. \qquad $\mathrm{kg} / \mathrm{liter}$
19. 7,621 grams/centimeter
20. \qquad pounds/inch

Conversion Problems Worksheet

Answer Key

Name: \qquad Date: \qquad Grade: \qquad
One Step Conversion Problems \sim English \leftrightarrow Metric
A. Convert the units on the left to the units on the right.

Two Step Conversion Problems ~ Type 1
B. Convert the units on the left to the units on the right.

Given			Looking For	
1.	18.4 fluid ounces	1.	0.544	liters
2.	2 days	2.	2,880	minutes
3.	1,250 grams	3.	2.758	pounds
4.	3,195 yards	4.	2.92	kilometers
5.	5.4 liters	5.	182.52	fluid ounces
6.	4,196 grams	6.	9.26	pounds
7.	2.5 gallons	7.	9,462.5	milliliters
8.	1.8 meters		71	inches
9.	425 ounces		12.0	kilograms
10.	20 inches	10	0.508	meters

Two Step Conversion Problems ~ Type 2
C. Convert the units on the left to the units on the right.

Given
Looking For

1. 340 miles/hour
2. 6.5 ounces/in
3. 576 milliliters/minute
4. $\quad 18.5$ gallons/day
5. 238 pounds/gallon
6. $\quad 37.4$ ounces/inch
7. 1,250 milliliters/kilogram
8. 72 kilograms/meter
9. 446 grams/liter
10. 98 inches/second
11. \qquad $\mathrm{km} /$ minute
12. \qquad $\mathrm{ml} / \mathrm{cm}$
13. \qquad fluid oz/hour
14. \qquad liters/hour
15. \qquad kg /liter
16. \qquad grams/cm
17. \qquad fluid oz/pound
18. \qquad pounds/feet
19. \qquad ounces/gallon
20. \qquad $\mathrm{cm} /$ minute

Three Step Conversion Problems
D. Convert the units on the left to the units on the right.

Given \qquad Looking For

1. 690 inches/minute
2. 812 ounces/gallon
3. 5,416 fluid ounces/day
4. 24 pounds/day
5. $\quad 37.5$ gallons/yard
6. 1,892 milliliters/second
7. 9.6 liters/hour
8. $\quad 13.2$ kilometers/day
9. 427 ounces/gallon
10. 7,621 grams/centimeter

1.	1051.56	$\mathrm{~meters} / \mathrm{hour}$
2.	6.08	$\mathrm{~kg} / \mathrm{liter}$
3.	6.68	liters/hour
4.	0.0076	$\mathrm{~kg} / \mathrm{minute}$
5.	155,210	$\mathrm{ml} / \mathrm{meter}$
6.	6.81	liters/hour
7.	2.67	$\mathrm{ml} / \mathrm{second}$
8.	9.167	meters/min
9.	3.196	$\mathrm{~kg} / \mathrm{liter}$
10.	42.71	pounds/inch

A. One Step Conversion Problems

1. $78 \mathrm{ft} \times \frac{0.305 \mathrm{~m}}{1 \mathrm{ft}}=23.79 \mathrm{~m} \quad 78 \mathrm{ft} \times \frac{1 \text { meter }}{3.28 \mathrm{ft}}=23.78 \mathrm{~m}$
2. $15 \mathrm{~km} \times \frac{0.621 \text { miles }}{1 \mathrm{~km}}=9.315$ miles $\quad 15 \mathrm{~km} \times \frac{1 \mathrm{mile}}{1.61 \mathrm{~km}}=9.317 \mathrm{miles}$
3. 6 in $\times 2.54 \mathrm{~cm}=15.24 \mathrm{~cm}$ 1 in

6 in $\times \underline{1 \mathrm{~cm}}=15.24 \mathrm{~cm}$ 0.3937 in
4. $\quad 8 \mathrm{fl} \mathrm{oz} \mathrm{x} \frac{29.585 \mathrm{ml}}{1 \mathrm{fl} \mathrm{oz}}=236.68 \mathrm{ml}$
$8 \mathrm{fl} \mathrm{oz} \mathrm{x} \frac{1 \mathrm{ml}}{0.0338 \mathrm{fl} \mathrm{oz}}=236.68 \mathrm{ml}$
5. $\quad 5 \mathrm{~L} x \underline{0.2642 \mathrm{gal}}=1.32 \mathrm{gal}$ 1 L
$5 \mathrm{~L} \times \underline{1 \mathrm{gal}}=1.32 \mathrm{gal}$ 3.785 L
6. $\quad 8.5 \mathrm{lb} \times \frac{0.454 \mathrm{~kg}}{1 \mathrm{lb}}=3.86 \mathrm{~kg}$
$8.5 \mathrm{lb} \times \frac{1 \mathrm{~kg}}{2.202 \mathrm{lb}}=3.86 \mathrm{~kg}$
7. $\quad 200 \mathrm{~g} \times \frac{0.0353 \mathrm{oz}}{1 \mathrm{~g}}=7.06 \mathrm{oz}$
$200 \mathrm{~g} \mathrm{x} \frac{1 \mathrm{oz}}{28.33 \mathrm{~g}}=7.06 \mathrm{oz}$
8. $25 \mathrm{ml} \times \frac{0.0338 \mathrm{fl} \mathrm{oz}}{1 \mathrm{ml}}=0.85 \mathrm{fl} \mathrm{oz}$ $25 \mathrm{ml} \mathrm{x} \underset{29.585 \mathrm{ml}}{1 \mathrm{fl} \mathrm{oz}}=0.85 \mathrm{fl} \mathrm{oz}$
9. $\quad 75 \mathrm{~cm} \times \frac{0.3937 \mathrm{in}}{1 \mathrm{~cm}}=29.53$ in
$75 \mathrm{~cm} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=29.53 \mathrm{in}$
$9.0 \mathrm{~kg} \mathrm{x} \frac{1 \mathrm{lb}}{0.454 \mathrm{~kg}}=19.82 \mathrm{lb}$
10. $\quad 9.0 \mathrm{~kg} \times \underline{2.202 \mathrm{lb}}=19.82 \mathrm{lb}$ 1 kg
B. Two Step Conversion Problems ~ Type 1
 $1 \mathrm{fl} \mathrm{oz} \quad 1,000 \mathrm{ml} \quad 0.0338 \mathrm{fl} \mathrm{oz} 1 \mathrm{ml}$
2. 2 days $\times \frac{24 \mathrm{hrs}}{1 \text { day }} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=2,880 \mathrm{~min}$
3. $1,250 \mathrm{~g} \times \frac{0.0353 \mathrm{oz}}{1 \mathrm{~g}} \times \frac{1 \mathrm{lb}}{16 \mathrm{oz}}=2.758 \mathrm{lb} \quad 1,250 \mathrm{~g} \times \frac{1 \mathrm{oz}}{28.33 \mathrm{~g}} \times \frac{1 \mathrm{lb}}{16 . \mathrm{oz}}=2.758 \mathrm{lb}$
4. $3,195 \mathrm{yd} \times \frac{0.9145 \mathrm{~m}}{1 \mathrm{yd}} \times \frac{1 \mathrm{~km}}{1,000 \mathrm{~m}}=2.92 \mathrm{~km} \quad 3,195 \mathrm{yd} \times \frac{1 \mathrm{~m}}{1.0935 \mathrm{yd}} \times \frac{0.001 \mathrm{~km}}{1 \mathrm{~m}}=2.92 \mathrm{~km}$
5. $5.4 \mathrm{~L} \times \frac{1,000 \mathrm{ml}}{1 \mathrm{~L}} \times \frac{0.0338 \mathrm{fl} \mathrm{oz}}{1 \mathrm{ml}}=182.52 \mathrm{fl} \mathrm{oz} 54 . \mathrm{L} \times \frac{1 \mathrm{ml}}{0.001 \mathrm{~L}} \times \frac{1 \mathrm{fl} \mathrm{oz}}{29.585 \mathrm{ml}}=182.52 \mathrm{fl} \mathrm{oz}$
6. $4,196 \mathrm{~g} \mathrm{x} \frac{0.0353 \mathrm{oz}}{1 \mathrm{~g}} \times \frac{1 \mathrm{lb}}{16 \mathrm{oz}}=9.26 \mathrm{lbs} \quad 4,196 \mathrm{~g} \mathrm{x} \frac{1 \mathrm{oz}}{28.33 \mathrm{~g}} \times \frac{1 \mathrm{lb}}{16 \mathrm{oz}}=9.26 \mathrm{lbs}$
7. $2.5 \mathrm{gal} \times \frac{3.785 \mathrm{~L}}{1 \mathrm{gal}} \times \frac{1,000 \mathrm{ml}}{1 \mathrm{~L}}=9,462.5 \mathrm{ml}$
8. $1.8 \mathrm{mx} 3.28 \mathrm{ft} \times 12 \mathrm{in}=70.85 \mathrm{in}$

$$
1 \mathrm{~m} \quad 1 \mathrm{ft}
$$

$1.8 \mathrm{~m} \times \frac{1.0935 \mathrm{yd}}{1 \mathrm{~m}} \times \frac{36 \mathrm{in}}{1 \mathrm{yd}}=70.86 \mathrm{in}$
9. $425 \mathrm{oz} \times \frac{28.33 \mathrm{~g} \mathrm{x}}{1 \mathrm{oz}} \frac{0.001 \mathrm{~kg}}{1 \mathrm{~g}}=12.0 \mathrm{~kg}$

$$
425 \mathrm{oz} \times \frac{1 \mathrm{lb}}{16 \mathrm{oz}} \times \frac{0.454 \mathrm{~kg}}{1 \mathrm{lb}}=12.06 \mathrm{~kg}
$$

10. 20 in $\times \frac{2.54 \mathrm{~cm}}{1 \text { in }} \times \frac{0.001 \mathrm{~m}}{1 \mathrm{~cm}}=0.508 \mathrm{~m}$ 20 in $\mathrm{x} \frac{1 \mathrm{ft}}{12 \mathrm{in}} \times \frac{0.305 \mathrm{~m}}{1 \mathrm{ft}}=0.508 \mathrm{~m}$
$2.5 \mathrm{gal} \mathrm{x} \frac{1 \mathrm{~L}}{0.2642 _\mathrm{gal}} \mathrm{x} \frac{1 \mathrm{ml}}{0.001 \mathrm{~L}}=9,462.5 \mathrm{ml}$
$1.8 \mathrm{mx} 1 \mathrm{ft} \times 12 \mathrm{in}=70.85 \mathrm{in}$ 0.305 m 1 ft
$1.8 \mathrm{mx} \underset{0.9145 \mathrm{~m}}{\frac{1 \mathrm{yd}}{\mathrm{m}}} \frac{36 \mathrm{in}}{1 \mathrm{yd}}=70.86 \mathrm{in}$
$425 \mathrm{oz} \mathrm{x} \underset{0.0353 \mathrm{oz}}{\frac{1 \mathrm{~g}}{\mathrm{oz}}} \frac{1 \mathrm{~kg}}{1,000 \mathrm{~g}}=12.0 \mathrm{~kg}$
$425 \mathrm{ozx} 1 \mathrm{lb} \times 1 \mathrm{~kg}=12.06 \mathrm{~kg}$

20 in $\mathrm{x} \quad 1 \mathrm{~cm} \mathrm{x} \quad 1 \mathrm{~m}=0.508 \mathrm{~m}$
0.3937 in 100 cm

20 in $\mathrm{x} \frac{1 \mathrm{ft}}{12 \mathrm{in}} \times \frac{1 \mathrm{~m}}{3.28 \mathrm{ft}}=0.508 \mathrm{~m}$
C. Two Step Conversion Problems ~ Type 2
 $1 \mathrm{hr} \quad 1 \mathrm{mile} \quad 60 \mathrm{~min} \quad 1 \mathrm{~min} \quad 1 \mathrm{hr} \quad 0.621 \mathrm{mi} 60 \mathrm{~min} \quad 1 \mathrm{~min}$
2. $\quad \frac{6.5 \mathrm{fl} \mathrm{oz}}{1 \mathrm{in}} \times \frac{29.583 \mathrm{ml}}{1 \mathrm{fl} \mathrm{oz}} \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=\frac{75.71 \mathrm{ml}}{1 \mathrm{~cm}}$
$\frac{6.5 \mathrm{fl} \mathrm{oz} \mathrm{x}}{1 \mathrm{in}} 0.0 \frac{1 \mathrm{ml}}{0.0338 \mathrm{fl} \mathrm{oz}} \times \frac{0.3937 \mathrm{in}}{1 \mathrm{~cm}}=\frac{75.71 \mathrm{ml}}{1 \mathrm{~cm}}$
3. $\frac{576 \mathrm{ml}}{1 \mathrm{~min}} \times \frac{0.0338 \mathrm{fl} \mathrm{oz}}{1 \mathrm{ml}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=\frac{1,168 \mathrm{fl} \mathrm{oz}}{1 \mathrm{hr}} \frac{576 \mathrm{ml}}{1 \mathrm{~min}} \times \frac{1 \mathrm{fl} \mathrm{oz} \times}{29.585 \mathrm{ml}} \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=\frac{1,168 \mathrm{fl} \mathrm{oz}}{1 \mathrm{hr}}$
4. $\quad \frac{18.5 \mathrm{gal}}{1 \text { day }} \times \frac{3.785 \mathrm{~L}}{1 \mathrm{gal}} \times \frac{1 \text { day }}{24 \mathrm{hr}}=\frac{2.918 \mathrm{~L}}{1 \mathrm{hr}}$
5. $\quad \underline{238 \mathrm{lb}} \times \underline{0.454 \mathrm{~kg} \mathrm{x}} \underline{1 \mathrm{gal}}=\underline{28.55 \mathrm{~kg}}$

$238 \mathrm{lb} \times 1 \mathrm{~kg} \times \underline{0.2642 \mathrm{gal}}=\underline{28.56 \mathrm{~kg}}$ $1 \mathrm{gal} \quad 1 \mathrm{lb} \quad 3.785 \mathrm{~L} \quad 1 \mathrm{~L}$
$1 \mathrm{gal} \quad 2.202 \mathrm{lb} \quad 1 \mathrm{~L} \quad 1 \mathrm{~L}$
6. $\frac{37.4 \mathrm{oz}}{1 \mathrm{in}} \times \frac{28.33 \mathrm{~g}}{1 \mathrm{oz}} \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=\frac{417.1 \mathrm{~g}}{1 \mathrm{~cm}}$
$\frac{37.4 \mathrm{oz}}{1 \mathrm{in}} \times \frac{1 \mathrm{~g}}{0.0353 \mathrm{oz}} \times \frac{0.3937 \mathrm{in}}{1 \mathrm{~cm}}=\frac{417.1 \mathrm{~g}}{1 \mathrm{~cm}}$
7. $\frac{1,250 \mathrm{ml}}{1 \mathrm{~kg}} \times \underline{0.0338 \mathrm{fl} \mathrm{oz}} \times \underline{1 \mathrm{~kg}}=\underline{19.19 \mathrm{fl} \mathrm{oz}} \frac{1,250 \mathrm{ml}}{1 \mathrm{~kg}} \times \underline{1 \mathrm{fl} \mathrm{oz}} \times \underline{0.454 \mathrm{~kg}}=\underline{19.18 \mathrm{fl} \mathrm{oz}}$
 $1 \mathrm{~m} \quad 1 \mathrm{~kg} \quad 3.28 \mathrm{ft} \quad 1 \mathrm{ft}$

$1 \mathrm{~m} \quad 0.454 \mathrm{~kg} \quad 1 \mathrm{ft} \quad 1 \mathrm{ft}$

10. $\quad \underline{98 \mathrm{in}} \times \underline{2.54 \mathrm{~cm} \times 60 \mathrm{sec}}=\underline{14,935.2 \mathrm{~cm}}$ $1 \mathrm{sec} \quad 1 \mathrm{in} \quad 1 \mathrm{~min} \quad 1 \mathrm{~min}$
$\underline{98 \mathrm{in}} \times \underline{1 \mathrm{~cm}} \times \underline{60 \mathrm{sec}}=\underline{14,935.2 \mathrm{~cm}}$ $1 \mathrm{sec} 0.3937 \mathrm{in} 1 \mathrm{~min} \quad 1 \mathrm{~min}$

D. Three Step Conversion Problems

1. $\frac{690 \mathrm{in}}{1 \mathrm{~min}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{0.01 \mathrm{~m}}{1 \mathrm{~cm}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=\frac{1,051.56 \mathrm{~m}}{1 \mathrm{hr}} \frac{690 \mathrm{in}}{1 \mathrm{~min}} \times \frac{1 \mathrm{~cm}}{0.3937 \mathrm{in}} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=\frac{1,051.56 \mathrm{~m}}{1 \mathrm{hr}}$
 $\begin{array}{llll}1 \mathrm{gal} & 1 \mathrm{oz} & 1 \mathrm{~g} & 3.785 \mathrm{~L}\end{array}$
 1 gal $0.0353 \mathrm{oz} 1,000 \mathrm{~g} \quad 1 \mathrm{~L} \quad 1 \mathrm{~L}$

 1 day $\quad 1 \mathrm{lb} \quad 24 \mathrm{hr} \quad 60 \mathrm{~min} \quad 1 \mathrm{~min}$
$\underline{24 \mathrm{lb}} \times \underline{1 \mathrm{~kg} \times 1 \text { day } \times 1 \mathrm{hr}=\underline{0.0076 \mathrm{~kg}}, ~(1)}$ 1 day $2.202 \mathrm{lb} \quad 24 \mathrm{hr} \quad 60 \mathrm{~min} \quad 1 \mathrm{~min}$
2. $\underline{37.5 \mathrm{gal}} \times \underline{3.785 \mathrm{~L}} \times \underline{1,000 \mathrm{ml}} \times \underline{1} \underline{\mathrm{yd}}=155,210 \mathrm{ml} \frac{37.5 \mathrm{gal} \times 1 \mathrm{~L}}{1 \mathrm{~L}} \times 1 \mathrm{ml} \times 1.0935 \mathrm{yd}=155,210 \mathrm{ml}$ $\begin{array}{lllllllll}1 \mathrm{yd} & 1 \mathrm{gal} & 1 \mathrm{~L} & 0.9145 \mathrm{~m} & 1 \mathrm{~m} & 1 \mathrm{yd} & 0.2642 \mathrm{gal} 0.001 \mathrm{~L} & 1 \mathrm{~m} & 1 \mathrm{~m}\end{array}$
 $1 \mathrm{sec} \quad 1 \mathrm{ml} \quad 1 \mathrm{~min} \quad 1 \mathrm{hr} \quad 1 \mathrm{hr}$
3. $\frac{9.6 \mathrm{~L}}{1 \mathrm{~h}} \underline{1,000 \mathrm{ml}} \times \underline{1 \mathrm{hr}} \times \underline{1 \mathrm{~min}}=\underline{2.67 \mathrm{ml}}$ $1 \mathrm{hr} \quad 1 \mathrm{~L} \quad 60 \mathrm{~min} \quad 60 \mathrm{sec} \quad 1 \mathrm{sec}$
4. $13.2 \mathrm{~km} \times \underline{1,000 \mathrm{~m} \times 1 \text { day } \mathrm{x} 1 \mathrm{hr}=\underline{9.167 \mathrm{~m}}, ~(1)}$ 1 day $\quad 1 \mathrm{~km} \quad 24 \mathrm{hrs} 60 \mathrm{~min} \quad 1 \mathrm{~min}$
 $\begin{array}{llll}1 \mathrm{gal} & 1 \mathrm{oz} \quad 1 \mathrm{~g} \quad 3.785 \mathrm{~L} \quad 1 \mathrm{~L}\end{array}$
$\frac{1.892 \mathrm{ml}}{1 \mathrm{sec}} \times \frac{1 \mathrm{~L}}{1,000 \mathrm{ml}} \times \frac{60 \sec }{1 \mathrm{~min}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=\frac{6.81 \mathrm{~L}}{1 \mathrm{hr}}$
$9.6 \mathrm{~L} \times 1 \mathrm{ml} \times 1 \mathrm{hr} \times 1 \mathrm{~min}=\underline{2.67 \mathrm{ml}}$ $1 \mathrm{hr} \quad 0.001 \mathrm{~L} 60 \mathrm{~min} \quad 60 \mathrm{sec} \quad 1 \mathrm{sec}$
$13.2 \mathrm{~km} \times 1 \mathrm{~m} \times \underline{1 \text { day } \mathrm{x}} \underline{1 \mathrm{hr}}=\underline{9.167 \mathrm{~m}}$ 1 day $\quad 0.001 \mathrm{~km} 24 \mathrm{hrs} 60 \mathrm{~min} \quad 1 \mathrm{~min}$
$\frac{427 \mathrm{oz} \times}{1 \mathrm{gal}} 0 \frac{1 \mathrm{~g}}{0.0353 \mathrm{oz}} \times \frac{1 \mathrm{~kg}}{1,000 \mathrm{~g}} \times \frac{0.2642 \mathrm{gal}}{1 \mathrm{~L}}=\frac{3.196 \mathrm{~kg}}{1 \mathrm{~L}}$
5. $\frac{7,621 \mathrm{~g}}{1 \mathrm{~cm}} \times \frac{0.0353 \mathrm{oz} \times}{1 \mathrm{~g}} \frac{1 \mathrm{lb}}{16 \mathrm{oz}} \times \frac{1 \mathrm{~cm}}{0.03937 \mathrm{in}}=\frac{42.72 \mathrm{lb}}{1 \mathrm{in}} \frac{7.621 \mathrm{~g} \mathrm{x}}{1 \mathrm{~cm}} \frac{1 \mathrm{oz}}{28.33 \mathrm{~g}} \times \frac{1 \mathrm{lb}}{16 \mathrm{oz}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}=\frac{42.71 \mathrm{lb}}{1 \mathrm{in}}$

Worksheet Grading Rubric: 135/135 Points

Problems	Correct Set-up	All Labels	Correct Answer	Total Points
A. $1-10$	1 pt each	0.5 pts each	1 pt each	Total 2.5 pts each
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
B. 1-10	1.5 pts each	0.5 pts each	1 pt each	Total 3 pts each
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
C. 1-10	1.5 pts each	1 pt each	1 pt each	Total 3.5 pts each
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
D. 1-10	2 pts each	1.5 pts each	1 pt each	Total 4.5 pts each
1				
. 2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				

Conversion Problems Quiz

Name: \qquad Date: \qquad Grade: \qquad

1. \qquad Another name for Dimensional Analysis is \qquad .
A. Proportions
B. Label Method
C. Fraction Method
D. Factor - Label Method
2. \qquad All standard or situational equivalents can be represented by \qquad fractions.
A. 1
B. 2
C. 3
D. 4
3. \qquad The Dimensional Analysis problem solving scheme is \qquad .
A. given data x what you're looking for $=$ specific fractional equivalent
B. what you're looking for x specific fractional equivalent = given data
C. given data x specific fractional equivalent $=$ what you're looking for
D. none of the above
4. \qquad Convert 1,440 seconds to hours.
A. $51,840,000$ hours
B. 240 hours
C. 864,000 hours
D. 4 hours
5. Convert 500 grams to pounds.
A. $\quad 1.1$ pounds
B. $\quad 282.4$ pounds
C. $226,628.9$ pounds
D. 0.001 pounds
6. \qquad Convert 20 ounces/gallon to grams/liter.
A. $\quad 2.7$ grams/liter
C. 0.19 grams/liter
B. $\quad 149.7$ grams/liter
D. 2,144.6 grams/liter
7. \qquad Convert 50 pounds/day to kilograms/hour.
A. $\quad 544.8 \mathrm{~kg} / \mathrm{hr}$
B. $\quad 4.59 \mathrm{~kg} / \mathrm{hr}$
C. $\quad 2,643.2 \mathrm{~kg} / \mathrm{hr}$
D. $\quad 0.9 \mathrm{~kg} / \mathrm{hr}$
8. \qquad Convert 15 mile/hour to kilometers/hour.
A. $\quad 0.40 \mathrm{~km} / \mathrm{hr}$
B. $\quad 24.15 \mathrm{~km} / \mathrm{hr}$
C. $\quad 9.32 \mathrm{~km} / \mathrm{hr}$
D. $\quad 2.42 \mathrm{~km} / \mathrm{hr}$
9. \qquad Convert 25 kilometers/day to meters/minute.
A. $\quad 17.36 \mathrm{~m} / \mathrm{min}$
B. $\quad 0.001736 \mathrm{~m} / \mathrm{min}$
C. $1,000 \mathrm{~m} / \mathrm{min}$
D. $\quad 36 \mathrm{~m} / \mathrm{min}$
10. \qquad Convert 50 gallon/yard to milliliters/millimeter.
A. $\quad 14.4 \mathrm{ml} / \mathrm{mm}$
B. $\quad 12.1 \mathrm{ml} / \mathrm{mm}$
C. $\quad 207 \mathrm{ml} / \mathrm{mm}$
D. $\quad 0.207 \mathrm{ml} / \mathrm{mm}$

Conversion Problems Quiz
 Answer Key

1. _ D Another name for Dimensional Analysis is \qquad .
A. Proportions
B. Label Method
C. Fraction Method
D. Factor - Label Method
2. _ B All standard or situational equivalents can be represented by \qquad fractions.
A. 1
B. 2
C. 3
D. 4
3. C The Dimensional Analysis problem solving scheme is \qquad .
A. given data x what you're looking for $=$ specific fractional equivalent
B. what you're looking for x specific fractional equivalent = given data
C. given data x specific fractional equivalent $=$ what you're looking for
D. none of the above
4. _ D Convert 1,440 seconds to hours.
A. $51,840,000$ hours
B. 240 hours
C. 864,000 hours
D. 4 hours
$14,400 \sec \times 1 \min x \quad 1 \mathrm{hr}=4 \mathrm{hrs}$ 60 sec 60 min
5. _ A Convert 500 grams to pounds.
A. $\quad 1.1$ pounds
B. 282.4 pounds
C. $226,628.9$ pounds
D. 0.001 pounds

$$
500 \mathrm{~g} \mathrm{x} \frac{0.0353 \mathrm{oz}}{1 \mathrm{~g}} \times \frac{1 \mathrm{lb}}{16 \mathrm{oz}}=1.1 \mathrm{lb}
$$

$500 \mathrm{~g} \mathrm{x} 1 \mathrm{oz} \mathrm{x} 1 \mathrm{lb}=1.1 \mathrm{lb}$ 28.33 g 16 oz
6. __ Convert 20 ounces/gallon to grams/liter.
A. $\quad 2.7$ grams/liter
C. 0.19 grams/liter
B. $\quad 149.7$ grams/liter
D. 2,144.6 grams/liter
$\frac{20 \mathrm{oz} \mathrm{x}}{1 \mathrm{gal}} \frac{1 \mathrm{~g}}{0.0353 \mathrm{oz}} \times \frac{0.2642 \mathrm{gal}}{1 \mathrm{~L}}=\frac{149.7 \mathrm{~g}}{1 \mathrm{~L}} \quad \frac{20 \mathrm{oz}}{1 \mathrm{gal}} \times \frac{28.33 \mathrm{~g} \mathrm{x}}{1 \mathrm{oz}} \frac{1 \mathrm{gal}}{3.785 \mathrm{~L}}=\frac{149.7 \mathrm{~g}}{1 \mathrm{~L}}$
$\frac{20 \mathrm{oz} \mathrm{x}}{1 \mathrm{gal}} \frac{1 \mathrm{~g}}{0.0353 \mathrm{oz}} \times \frac{1 \mathrm{gal}}{3.785 \mathrm{~L}}=\frac{149.7 \mathrm{~g}}{1 \mathrm{~L}} \quad \frac{20 \mathrm{oz}}{1 \mathrm{gal}} \frac{28.33 \mathrm{~g} \mathrm{x}}{1 \mathrm{oz}} \frac{0.2642 \mathrm{gal}}{1 \mathrm{~L}}=\frac{149.7 \mathrm{~g}}{1 \mathrm{~L}}$
7. __D Convert 50 pounds/day to kilograms/hour.
A. $\quad 544.8 \mathrm{~kg} / \mathrm{hr}$
B. $\quad 4.59 \mathrm{~kg} / \mathrm{hr}$
C. $\quad 2,643.2 \mathrm{~kg} / \mathrm{hr}$
D. $\quad 0.9 \mathrm{~kg} / \mathrm{hr}$

1 day 2.202 lb 24 hrs 1 hr
$\frac{50 \mathrm{lb}}{1 \text { day }} \times \frac{0.454 \mathrm{~kg}}{1 \mathrm{lb}} \times \frac{1 \mathrm{day}}{24 \mathrm{hrs}}=\frac{0.9 \mathrm{~kg}}{1 \mathrm{hr}}$
8. _B Convert $15 \mathrm{mile} / \mathrm{hour}$ to kilometers/hour.
A. $\quad 0.40 \mathrm{~km} / \mathrm{hr}$
B. $\quad 24.15 \mathrm{~km} / \mathrm{hr}$
C. $\quad 9.32 \mathrm{~km} / \mathrm{hr}$
D. $\quad 2.42 \mathrm{~km} / \mathrm{hr}$
$\frac{15 \text { miles }}{1 \mathrm{hr}} \times \frac{1.61 \mathrm{~km}}{1 \mathrm{mile}}=\frac{24.15 \mathrm{~km}}{1 \mathrm{hr}} \quad \frac{15 \text { miles }}{1 \mathrm{hr}} \times \frac{1 \mathrm{~km}}{0.621 \mathrm{miles}}=\frac{24.15 \mathrm{~km}}{1 \mathrm{hr}}$
9. _A Convert 25 kilometers/day to meters/minute.
A. $\quad 17.36 \mathrm{~m} / \mathrm{min}$
B. $\quad 0.001736 \mathrm{~m} / \mathrm{min}$
C. $1,000 \mathrm{~m} / \mathrm{min}$
D. $\quad 36 \mathrm{~m} / \mathrm{min}$
 1 day $\quad 1 \mathrm{~km} \quad 24 \mathrm{hrs} 60 \mathrm{~min} \quad 1 \mathrm{~min} \quad 1$ day $0.001 \mathrm{~km} 24 \mathrm{hrs} 60 \mathrm{~min} \quad 1 \mathrm{~min}$
10. _ C Convert 50 gallon/yard to milliliters/millimeter.
A. $\quad 14.4 \mathrm{ml} / \mathrm{mm}$
B. $\quad 12.1 \mathrm{ml} / \mathrm{mm}$
C. $\quad 207 \mathrm{ml} / \mathrm{mm}$
D. $\quad 0.207 \mathrm{ml} / \mathrm{mm}$
$\underline{50 \mathrm{gal}} \times \underline{3.785 \mathrm{~L}} \times \underline{1,000 \mathrm{ml}} \times \underline{1 \mathrm{yd}} \times \underline{1 \mathrm{~m}}=\underline{207 \mathrm{ml}}$ $1 \mathrm{yd} \quad 1 \mathrm{gal} \quad 1 \mathrm{~L} \quad 0.9145 \mathrm{~m} \mathrm{1,000} \mathrm{~mm} \quad 1 \mathrm{~mm}$
 $1 \mathrm{yd} \quad 1 \mathrm{gal} \quad 1 \mathrm{~L} \quad 1 \mathrm{~m} \quad 1 \mathrm{~mm} \quad 1 \mathrm{~mm}$
$50 \mathrm{gal} \mathrm{x} \quad 1 \mathrm{~L} \times 1 \mathrm{ml} \times 1 \mathrm{yd} \mathrm{x} \quad 1 \mathrm{~m}=207 \mathrm{ml}$ $1 \mathrm{yd} \quad 0.2642$ gal $0.001 \mathrm{~L} \quad 0.9145 \mathrm{~m} \quad 1,000 \mathrm{~mm} \quad 1 \mathrm{~mm}$
 $1 \mathrm{yd} \quad \overline{0.2642 \mathrm{gal}} \overline{0.001 \mathrm{~L}} \quad 1 \mathrm{~m} \quad 1 \mathrm{~mm} \quad 1 \mathrm{~mm}$

Quiz Grading Rubric:
30/30 Points

Problems	1 pt each		Problems	1.5 pts each
1.			3.	
2.			8.	

Problems	Correct Set-up	Correct Labels	Correct Answer	Total Points
	1 pt each	1 pt each	1 pt each	Total 3 pts
4.				
5.				
	2 pts each	1 pt each	1 pt each	Total 4 pts
6.				
7.				
	2 pts each	1 pt each	2 pts each	Total 5 pts
9.	2 pts each	2 pts each	2 pts each	Total 6 pts
10.				

